Devouring Data.
This should be easy, but it isn’t.
Before Gnash can do something useful with the data it controls, it has to obtain some data. This should be a simple process, but no coherent plan has survived organisational turbulence. Amongst the source data files there is a plethora of formats nor is there any consistent naming scheme even though with thousands of separate streams the need for organisation is obvious. The problem is exacerbated by odd usages: some formats are bloated and their redundancy faciltates perverse presentations.

Accordingly, Gnash is equipped with facilities for dealing with every encountered format, and on general principles, can also deal with its own output format as produced by its DUMP command. The resulting flexibility encourages hope that a new supplier of data might deliver them in a form that could be accepted if perhaps with some slight preparatory editing, but idiots’ ingenuity is infinite.

The objective is to augment Gnash’s collection of data runs. There are thousands of them, each identified by a name, and having an associated title. Thus, when data arrives, the appropriate run must be identified via some name, and if necessary, new runs created to accommodate the arrivals with in such a case some sort of title for each new run. As far as Gnash is concerned, a run name must start with a letter, and contain only letters, digits and a few special characters such as a period (“.”) and an underline (“_”) with no distinction between capitals and lower case letters.

The idea behind this (especially that the first symbol must be a letter) is that the resulting names can be used somewhat in the style of the names of variables in computer languages, and in particular, can appear in well-formed arithmetic expressions that Gnash can itself recognise and compile into its internal code. Thus, if a run were to be named “A” then an expression such as “3*A” would be recognised appropriately as meaning three times A, whereas sequences such as “Huntly-1” and “Huntly-2” would be treated just as “Huntly – 1” or “Huntly – 2” would be.

Subroutine GOURMAND is presented with the name of a data file to read (perhaps it is working through a list of hundreds or even thousands of data files), and for each file, inspects the first line so as to identify the format and thus select the appropriate subroutine to attempt to deal with it. The selected routine is expected to concoct a name (or names) for the run (or runs) of data to be found in its file, along with a suitable title (or titles) against the possibility that a name has not previously been encountered so that Gnash’s collection must be augmented. Some formats identify the names in a heading, others scatter the names throughout the file along with the data.

This process is initiated by the EAT command which nominates a file to be ... eaten by GOURMAND as in “EAT somefile.data” and as there may be thousands of files to deal with there is a scheme whereby the nominated file is instead a file containing a list of file names (one per line), each of which is to be eaten. To do this, the command would be “EAT @somefile.text” or similar.

Producing such a list of file names is itself a vexatious process. One can diligently type in the names, a simple clerical task. Computers excel at simple clerical tasks, so why not have the computer do it? Well, it is not fashionable. On computers controlled by “Windows”, the facility used to display file names is unhelpful, and although there are some utilities that can help, they are seldom available. Instead, one is condemned to dwell in DOS for a period and deal in gibberish such as follows:

 DIR *.dat /s /a-d /b > files.txt
This means that the “directory” command is activated (though we are nowadays supposed to talk about “folders”), to name all files whose last name parts end in “.dat” (thus not “.txt”, etc.), that any subdirectories of the current directory are to be searched into as well (the “/s”), that possible files whose attributes are “directory” are not to be named (the “-d” of “/a-d”), that the names are to be the full file name with the directory path included yet bare of auxiliary information such as file size (the “/b”), and, that the output resulting from this is not to be displayed but instead written to a file (the “>”) called files.txt or whatever you choose, which file can then be edited to add or remove file names as needed for the current campaign. If you don’t like this incantation, you get to type file names...

 And there are tricky bits too. If there is only one directory of interest, and you issue the command from within that directory (that is, your DOS session’s “current path” is to that directory, achieved via suitable CD (“Change Directory”) commands) you might reasonably omit the “/s” because no sub-directories are involved, and then, surprisingly, the file names will be revealed without the directory path to them, which may or may not be troublesome...

So then, you are ready for a feeding session. But not quite.

As one might expect by now, the names in the source data files do not even remotely conform with the obvious desideratum, and as well, vary without reason from one data file to the next. When the appropriate routine is invoked for the particular format encountered, the routine abstracts from its data file the name or names of the data streams therein and presents them to routine FINDBERTH to identify which run of data currently held by Gnash corresponds to each such name. If the names were consistent, there would be no difficulty, but they are not consistent. To deal with this, an alias table is referred to which contains one or more names as they might be found in the incoming data, and nominates a proper, valid, and organised name to use in its place, with a proper title to go with it. This name is then used to select (or create) the correct run in Gnash’s collection.
Gnash will load its alias table via the command ASSIGNATIONS aliases.txt (or whatever you’ve chosen to call the file) and initially the table was expected to be relatively brief. It is however thousands of lines long. The collection of printometer data numbers some 4,000 files, many of which contain more than one channel of data. There was some consistency from year to year so that only 3,000 names resulted, and after extensive scrutiny (involving no small adjustment of the data file collection), the alias table reduced that to about 1,200 separate runs.

So on the arrival of data files for Gnash, the plan is as follows: having prepared a schedule of file names, activate Gnash, supply it the alias list, and have Gnash eat its way through the files. Whereupon, all will be well.

Or, maybe not.

The lack of organisation is comprehensive. Quite aside from errors or format changes, any incoming data file might contain a new name, or a variation on an existing name, without warning. Since the new variant will not be amongst those previously spotted, and will not likely match any of the existing names of runs held by Gnash, a new run will be created bearing that name, and also an associated title. These are quite unlikely to be satisfactory, so you would use Gnash’s commands RENAME and RETITLE to adjust them, and also make an addition to the aliases file so that on later acquaintance all will be well. But it is also possible that the newly-encountered name is merely some inane variation on an existing name and now the situation is annoying. You will have two runs where you should have one. You can adjust the alias table and re-EAT the offending data file (or else use the PATCH command to copy the new data to the proper run), but you still are stuck with an unwanted fragment; for this you would use the DELETE command if you don’t mind litter accumulating. Unfortunately, Gnash has no access to a facility for releasing the disc storage that the deleted run occupies in its work file, but this space will be reused later when additional data arrives.

So, the revised procedure is more complex. Rather than risk having to mess about with possible renamings and deletions, rename Gnash’s workfile BigBag.gnash to something else, then activate Gnash (which will create a new BigBag.gnash work file) and feed it the alias list and the data files. View any error messages, especially any remarks about adding a new run and take appropriate action while fantasising about blunt, heavy objects. When satisfied, delete the temporary work file and rename the proper one back to BigBag.gnash, then, not forgetting the alias table, present the now-checked banquet and at last, all will be well...

Except for problems with the values themselves....

As mentioned, the objective is to possess many runs of data each named according to some coherent plan and each having an unbroken extent. Such data could arrive in multiple files in different formats with different names, but via the alias table Gnash would piece it all together and it would be good. As the organising of this proceeded, irritation grew. The idea was just to accept and store data, but the arriving tangles provoked the addition of various checking features. The simplest is that if incoming data exactly matches already-stored data, then little need be done other than to remark on this. Multiple supplies of the same data are merely tedious, and surplus supplies can be purged from the file collection unless they’re entangled with other, unique data.

The next difficulty was that for some names there was conflicting data. Possibly, the name derivation process was insufficiently discriminating so that two different data streams appeared to have the same name, or there were mistakes in the alias list. Whichever, Gnash was extended so as to present a report on “changes” should they occur, and it maintains a version number for each day of saved data.

 Slowly, the runs were disentangled, but still there were clashes. Two different files might provide different data for a particular day, yet their names were clearly attributed correctly. The situation might be that at an existing measurement point there was some change such as a new meter being installed, or a new transformer, whatever; the old run of data came to an end at some time before midnight, and a new run of data was started, with midnight, both covering the same day. This had been forseen, the plan being that the first meter’s data would run out to the end of the day with code values signifying “no value”, and likewise the new meter’s data would start on that day with “no value” codes until the changeover (thereby meeting the requirement that every day have a full set of data) and the combination of the two should present an unbroken sequence possibly with values of zero for when there was an actual disconnection, or else appropriate codes should power have been passed, but not metered.

Thus Gnash reserves internally a special value called BAD which it interprets as “no value here” and, when incoming data meets existing data (that had been read in from some file previously encountered) it is arranged that existing BAD values can be replaced by incoming non-BAD values, and incoming BAD values do not replace existing non-BAD values, and all should be well.

But no. Some data has been supplied in batches, and different batches overlap, and in some overlaps, one file offers values of zero while another for the same name and date offers values that are non-zero, and excising the unwanted values is difficult because the supplying file contains data for hundreds of different names, scattered about, and one really ought not mess about with source files to destroy data. When producing a batch of data, a supplier, if lacking data for some name on some date, could have simply refrained from generating any output record for it, rather than spitting out a record with values of zero, but that would have been sensible and untroublesome.

Accordingly, subprogramme SWALLOW (which deals with the storage of data eaten by the routine that GOURMAND invoked to deal with the format of the given data file) recognises the states of the following variables, which may be altered via the SET command:

NOTEADDITIONS = f
No report on adding a new day’s data where there had been none.
NOTECHANGES = t
Report changes to existing data.
ADDOVERLAPS = f
Regard overlaps as changes rather than adding the values.
NOTEZEROADDITIONS = t
Report even additions to (or of) zero.
And with suitable selections and a comprehensive aliases list, the great pile of source data files can be inspected without overwhelming reports being generated (such as “changes” files in the gigabyte size range) so that eventually the various streams of data can be assigned a place in an organised name structure and collated into one big happy family.

Ha ha. Such fantasies are dashed by the likes of the “Final Prices” data. This arrives in large files of a particularly bloated format that facilitates fresh levels of disorganisation.

Since 1996 the main data format has wasted space by having every line identify its name, then the date and then the forty-eight (or forty-six or fifty, on the accursed daylight-saving changeover days) values, usually followed by a checksum. Thus a year’s data for a given name will involve 365 (or 366) repetitions of the name. But a typical file will have data for more than one name, indeed many names, so two organisational possibilities arise. One is to have successive lines bear successive dates for the same name followed by a second batch for the next name and so on, the other is that successive lines bear the different names (perhaps even in alphabetical order) for the first date followed by a similar batch for the next date and so on. A third is of course some random mixture of the two.

Well, Gnash doesn’t care: this is the whole point of random-access data storage and it is prepared to juggle up to MANY = 666 separate names at once in dealing with a particular input file of this format, though it does prefer to have the earliest date for a run to be the first-encountered day’s data.

This is not enough for the Final Prices data, which escalates to each line having only one half-hourly datum so that its bloat involves the repetition of the name, the date, and now an extra field, the identifying half-hour number, because of course this enables successive half-hourly values for a particular name’s date to be scattered in any order, as indeed happens. Some data files appear with the prime ordering being by date, others by name, others by half-hour number, and many with no apparent ordering scheme at all. And because a day’s data can arrive piecemeal, indeed it does and it can happen that a particular day’s data for a particular name is partially supplied then, thousands of lines later in the input file appear additional values for that day. Thus not only is the many-day scheme exercised but also the BAD value replacement scheme, since time slots not filled during the first onslaught on a day are held open by BAD values for later arrivals, and all should be well.

But even this is still not enough. On each line of a Final Prices data file appears a timestamp (except when it doesn’t: there are half a dozen variants in the format even within the one file, such as the order of certain fields, or times in a twenty-four hour clock and with am/pm), and, obviously due to the use of the word “Final” it happens that one line’s “Final Price” value may be modified by a line encountered later for that name, date and time bearing a different “Final” value, itself no doubt just as provisionally “Final” as the first, and this can happen for any individual value of the day.

Accordingly, one might wish to have the timestamps inspected (in so far as they exist) for assurance that the last-standing “Final” value is the one with the latest timestamp – it is for this reason that the data file should not be sorted into date and time order before being read, the data file must be read in the order as presented so that the latest final value can be encountered last, or so one hopes.

To activate this checking, set TRACKTIMESTAMPS = true, and Gnash will for every name “x” create an adjunct run called “x.TimeStamp” to hold the timestamps for every single halfhourly value, and check them for order. This is tricky because the staccato arrival of data forces a further refinement in the shadings of absence. For a given run when a value is encountered for a day not previously stored, that value is associated with its timestamp (or BAD, if there is no timestamp) but the other times of that day have their timestamps set to zero, to signify that they do not (yet) have any occupant to worry about as distinct from having a value with an associated timestamp (or BAD) to be checked (or not).

And as a reduction in this labour, a variable REQUIRECODE has the value “F” since some of the lines of a Final Prices file turn out to not have a code of “F” and all values from such lines have so far been replaced by a value from a line that does bear a code “F”, so non-“F” lines can be skipped...

All this of course means that twice the storage is required, so you may wish to perform an assurance run without cluttering the main data collection with these vexatious adjuncts. Messing about with renaming files as before will enable this. Don’t worry, be happy.

But not just yet. As has been mentioned, the desire is to have many runs of data, each being an unbroken sequence of half-hourly values with forty-eight (or fifty or forty-six due to the daylight saving changeover day jiggle) values per day, three hundred and sixty-five (or three hundred and sixty-six due to the leap year jiggle) days to a year, year followed by year even as the millenium changes.

Some positive reinforcement is available, for example the double-D pair of Dannevirke and Dargaville, two well-defined and identifiable runs that are indeed unbroken. For Dargaville the alias table entries are as follows:
NI.Dargaville Dargaville (North Auckland).

 DVILLE:DARGAVILLE

 2*DAR0111.NPOW.GN.TPNZ.KWH.X.F

 2*DAR0111.NPOW.GN.TPNZ.KWH.X.I
The first entry is for the printometer file data where, thanks to the eight-character constraint on file name parts imposed by IBM’s MVS system, the name DVILLE was chosen, but the channel name was clear and explicit: DARGAVILLE. And so Gnash’s run name is NI.Dargaville since Dargaville is in the North Island, and the associated title hints at the location. Other names are less well-known: do you know where Roaring Meg is? The right one, mind.

The subsequent data format for this stream collapses the name to just a three letter code and so we must distinguish the likes of MTM from MTN, which imposes a cost in time-wasting mumbling and invites mistakes. The 2* is because these data are supplied in terms of kilowatt-hours, even though the time interval is not an hour but half an hour. And there are two entries, because although mostly data arrives with a name ending in “.F”, some also arrives with a name ending in “.I”. So far, whenever a day’s data for a name with an “.I” suffix arrives, it has slotted into a hole for that name that had been omitted from the arrivals with the “.F” suffix. Although Gnash could automate this apparent equivalence, there is no documentation affirming this interpretation, still less an explicit affadavit guaranteeing this behaviour for all time with a lien upon the life of the author’s first born and signed in blood. Nor should there be, because after some other files of deviant format (month names instead of numbers, and a few other details) were adjusted just a little (...) so as to become readable, names of this style have been found in which the suffix “.N” appears, and “N” is not one of the symbols equal to “F” or to “I”.

 So, it is a matter of adjusting the alias table as each little trick is discovered.

With the aid of appropriate entries in the alias table, the multiple streams of data for these all just fall into place. May it always be so!

But it isn’t. Many streams of data form truculent mobs of inbred data. The previous discussion has focussed on untangling them, so that from the many data streams discovered in the input horde, Gnash’s runs are to be such that although more than one data stream (perhaps with different names) may be directed to one run, there is no dispute as to the values of that run amongst the contributors. Thus, having separated the streams, the next requirement is to get them together.

Suppose there is some name X for which data has been collated, and then suddenly, X vanishes while there appear X1 and X2. For instance, X may have been the figure for a substation containing two transformers, and there had been a change to metering the two separately, or, perhaps there had been one transformer and a second one was added. Deducing what has happened is not at all simple, because there are no announcements of changes still less details as to their nature.

It is clear that the notion behind X continues: the total was X, but is now X1 + X2, however, no further data is arriving for X and it would be wrong to assign either X1 or X2 to X as might be done via the alias table. To assign both to X would lead to conflicting values for the same times, unless X1 = X2 which is hardly likely and would be nonsensical anyway. The proper procedure is to define suitable runs to hold X1 and X1 and after data has been eaten, command
PATCH X FROM X1 + X2
This will perform the calculation for the full span of dates in which both X1 and X2 have data and the results will be stored in run X with the rules as before about changes to X being reported or not. Obviously, the appropriate calculation depends on the situation: the new arrangement may actually be that the total remains metered, and X1 is metered, but what should be X2 is not metered, or,....

And the ingenious have found ways to frustrate even this scheme. It may happen that for some time span, all of X, X1, and X2 are available, and, their values are in dispute. That is, there is some day where X does not equal X1 + X2, and the difference cannot be ascribed to inaccuracy in the meters, which are good to about one part in ten thousand when operated in their proper range. For instance, the X meter may continue to operate (and power continue to pass) while meters X1 and X2 are installed, and one or both may be incorrectly recording zero values; similarly, the meter for X may have been disconnected, but its recording apparatus still presents a stream of zero values as if it were diligently measuring. Or, meter X may remain as meter X even though after the change it should be called meter X1, because it is now an associate of meter X2 and no longer represents the total, but it is just So Tedious to attend to petty details such as terminating one name and starting another.

When you have decided what has happened when, one possibility is to edit the source data files to remove (or better, comment out: Gnash skips lines starting with a % character) the unwanted data with suitable annotations, but with some formats this would be difficult as well as tedious and annoying. In this case you can escalate to using the PATCH command for specified dates, changing the actions to suit each time segment.
PATCH X1 FOR 13/4/95 FROM X - X2
PATCH X FOR 14/4/95 – 30/9/96 FROM X1 + X2
And if even this level of detail still fails to get the correct numbers into the desired slots, there is the final word, the ZAP command, such as follows:
ZAP X FOR 13/4/95 6:8 666,?,668
whereby for that date, the values given are placed in half-hour slots six, seven, and eight and the “?” means that the specially-recognised “BAD” value is placed in slot seven which is for the half-hour ending at 3:30am.

These various commands can be stored in a disc file, and executed via the XEQ command: they do not have to be remembered and re-typed every time!

Alternatively, you could choose a data format and prepare a data file with a set of values suitable for the troublesome period, praising the automated data collection systems that have provided these data with a smile on your lips and a song in your heart as you thump the keys.
Final procedure:
Rename Gnash’s workfile BigBag.gnash to something else, then activate Gnash and feed it the alias list and the data files. View any error messages, and should any new names appear, investigate. Run whatever patch commands have been established as necessary and check for satisfactory results. Make whatever changes to the alias list and patch command collection seem called for by the latest situation.

 When satisfied, delete the temporary work file and rename the proper one back to BigBag.gnash, then, not forgetting the alias table, re-eat the data files and apply the patches.

That’s it! Simple, really...

And now you can move on to deal with the modern practice: generation entering the grid through so-called “Grid Exit Points” and variations on this bright new concept, such as generation data that includes the load of nearby consumption so that the nett entry can be negative: entries can be exits too...
Data Formats.
As has been mentioned, many different file formats are recognised by Gnash. A particular data series stored by Gnash need not have been supplied by one format only, it can be collated from any number of data formats covering any date spans. Naturally, the last-supplied data file has the last word as to the value stored: there is no provision for multiple values for the same data series at the same time, though a version number for the day is kept. Similarly, data that have been read from files may be modified by the PATCH or ZAP commands. So far, it has proved possible for Gnash to identify the format of a particular data file from scrutiny of the start of the file, though in some cases it is necessary to edit the incoming file to introduce an omitted heading, or vice-versa. The alternative is to have different commands to initiate the reading of particular formats, and the selection would have to be done by hand. There are thousands of files involved, so this would be tedious!

The identification of data formats is performed by subroutine Gourmand, and these are the formats:

Printometer data.
In late 1983 the project to introduce a more complex tariff for the bulk supply of electricity confronted a problem. The existing tariff required an energy total for the time span (a "quarter" of three months) which was obtainable from the energy meter advance obtained from the reading of the energy meter at the end of each quarter. The new tariff required a day time and night time total, split further into working days and non-work days (weekends and national holidays), with different prices for winter and summer. These data could be acquired by installing additional meters with appropriate time-based switching except for two problems: there were too few technicians capable of installing the required equipment, which was unavailable anyway.

The next idea was to use an adding machine to total the half-hourly printometer values for the night period (which involved fewer half-hours) to obtain the night-time total, so that the day time total would be that figure subtracted from the energy meter total. This was rejected, because a typical printometer failure would result in a zero value contributing to the supposed night sum, thereby assigning the energy that may have been used to the more expensive day time. The agreed procedure was that all half-hourly values be totalled, and that the energy meter advance would be divided pro-rata by those totals to obtain the day energy and night energy for working days and non-working days. There was a further provision: if there were four or more bad values in a day, then that day would be entirely excluded from the totals.

Accordingly, every half-hourly value is being typed, into an adding machine. This is entirely the same data-entry effort as typing every half-hourly value into a computer data file, and given such data files, a computer programme could then calculate the totals and anything else that came to mind with no extra effort. Accordingly, I wrote a computer programme called Panak in pl/i to read the data file format that Colin Hamilton and I devised to suit the problem. It is easier to start with an example...
AUTHORITY 28 Marlborough Electric Power Board

PRINTO TYPE EPR

*48 Blenheim

01/04/81 203 190 180 174 170 164 164 163 161 168 174 193 221 267 343

386 408 414 416 409 379 372 376 378 366 353 347 342 329 329 327 334

337 364 406 427 432 447 442 428 412 389 379 351 330 290 249 223

02/04/81 203 187 175 170 165 163 163 163 162 167 175 188 218 265 343

392 416 426 422 411 387 377 384 379 379 359 356 344 338 328 330 310

342 370 410 436 448 468 452 440 418 394 382 356 330 297 257 226
As you can see, the file starts with a heading, and Gourmand recognises “Authority” as the identifying mark. The Blenheim substation falls in the area of the Marlborough EPB, and the Commercial section of the NZED in preparing its Annual Statistics used a numbering system that assigns Marlborough EPB the value 28. These details are supplied for confirmation of provenance, but were not otherwise assessed by Panak, nor now by Gnash.

The second line defines the type of printometer, and ignoring capital/lowercase differences, it starts “Printo” (allowing “Printometer” or “PrintoHorror”, etc.) with an optional word “Type” following. This is followed by a word indeed identifying the printometer type, and aside from not being “type”, some are special. If the type is “PR30” (or, the word “Reversed” follows the type) then “reversed” is declared. Likewise, if the type is “L&G” (or, the word “Strung” follows the type) then “strung” is declared – but a description of this comes later.

The PR30 model printometer emits its paper tape downwards (an adding machine emits its paper tape upwards) with the consequence that successive stampings for successive times run up the tape, not down. When a day’s tape is cut off and pasted to its place on the week’s card, although the data run from midnight to midnight, they do so upside down. Experienced punch hussies found entering a column of numbers from bottom to top disconcerting, so it was agreed that they would be entered from top to bottom, and the computer programme would attend to the simple clerical matter of inverting each day’s order. And it turned out that the GE type printometers, that use a large disc with the numbers 0000 to 9999 engraved on the periphery, also use this order but in the data files they have the word “reversed” appended.

The third line starts with an asterisk (in column one) followed by a number, followed by some text. This text names the channel of data being printed by the printometer, and the number is the current scale factor. That is, every value is to be multiplied by the scale factor, and the result is always kilowatts. The measurement apparatus (voltage transformer, current transformer, meter settings, spinning disc) produces a sequence of pulses and their count is always zero or positive. If the power flow being measured is bidirectional, there will be a separate, positive-reading meter for each direction.

The next line is blank for legibility (and need not appear), and now follows the data. Each day’s data starts on a new line (though not necessarily in column one) with a date, and the parts of a date may have leading zeroes (as here) or spaces, and use two or four-digit year numbers. The ordering is day/month/year, and the month must be a number (not Roman), and the separators must be slashes.

Following the date in free-format (separated by spaces) are the half-hourly counts from the printometer. Leaving the date on a line of its own makes for a more-readable file, but is not required, similarly, values could be aligned in neat columns or with a fixed number of values to a line or have leading zeroes or otherwise be grouped. Because the data were entered via IBM’s ISPF (“Interactive System Productivity Function) screen-based editor for which it was convenient to employ no more than 72 characters per line, the data files do not have long records. It is not allowable to split a number across a line – that will be read as two numbers. It turned out that text-handling variables in IBM mainframe pl/i incurred some sort of delay for larger variables, even if only a portion was in fact in use, so Panak would not accept a line length greater than eighty. With Gnash however there seems to be no such difficulty, and it allows very long lines thanks to a particularly poorly-thought out design for one format, so as far as Gnash is concerned, all the values for a day could be strung out along one long line. Nevertheless, the next day’s data would have to start with its date on a new line.

It should be clear that every day will have forty-eight values, except of course for the daylight savings changeover days when there will be either forty-six (a shrink day) or fifty (a stretch day), and if the count is not correct for any day, there will be complaints.

Aside from the annoying “reversed” issue, this is a simple data format, and compact. The data series name is mentioned once, each day’s date is mentioned once, and values that are multiples of some common factor can have that factor mentioned once. Thus, a sequence such as 50 70 10, etc. could be given a scale factor of ten and be presented more compactly as 5 7 1, etc.

But in fact, there are many more details beyond simple sequences of numbers.

The simplest is that there may be a change of scale factor. This could be handled by stopping the data file and starting a new one for the same series, but instead there is provision for inserting a scale change into the data sequence. The scale change will take effect at some time, say 12:24pm. Each printometer stamping is of course made at the end of its half-hour interval, so the protocol is to insert the new scale factor between the stampings for (ending) 12 noon, and (ending) 12:30pm. This requires an asterisk followed by the new value of the scale factor, thus a sequence such as 125 13 would become 125 *10 13. Unlike the stampings (which are integers) the scale factor can have a fractional part. This new scale factor applies for the stampings that follow it chronologically, and yes, for a reversed printometer, it applies to the values before it in input order for the day (which follow it in time order because of the reversal) and all is handled by the computer programme. Though not without juggling, especially if there is more than once scale change in a day.

Aside from scale changes, there may be difficulties with a half-hour’s datum. The stamping might be illegible, or other problem intervene. Colin Hamilton came up with the following codes:

F
Failure/malfunction of printer or metering.

U
Unreadable value (and other incidents)

B
Broken, jammed, or, run out of printometer tape.

R
Reset problem or failure. (e.g. the counter not set back to zero after printing).

O
Overprint of one or more stampings beyond legibility. (Paper tape was not advanced enough)

M
Maintenance outage on metering.
Thus, instead of a number, there might appear one of those code letters instead, and because the codes are always single letters, there need not be spaces between successive codes. And more. After a value (or a code letter denying a value), there might appear a statement in parentheses: (a307) would mean that a value of 307 was “Approved” for all uses such as billing calculations, while a sequence such as (g307) would mean that the value was a “Guess”, unsuitable for billing purposes. Following the number would come some explanatory comment (my favourite is “Transformer blown up” - by an angry farmer, with TNT), and if following the opening parenthesis was a space (rather than an A or G) then there was merely a comment, presumably explaining some unusual value.

When dealing with such data, for each half-hour Panak worked with a value and two associated codes, thus, Panak would present values and summations of values with codes indicating possible difficulties, with rules for combining codes – blank meant no worries, a blank with a G (or g) gives a G, a G with an A gives a ?, and similarly for the combinations of the FUBROM codes. However, Gnash deals only in a value or a code signifying BAD, not a value and associated codes whose presence will colour the interpretation of the value.

Finally, the data file could contain comment records, being lines whose first non-blank character is a percent sign, %. Such lines are ignored. These data files amount to a “log” of events, and indeed, Panak contained a command to scan data files and present a summary of such events, which were used to identify printometers that were suffering too many problems and so due for replacement. Gnash extracts these details only while reading the source data files: it prepares a log file but does not store the events. Further, since the electricity bills are long since presented, Gnash’s internal variable Input.PreferGuesses is set to true, so Gnash will show favour to such guesses. Similarly, when juggling multiple input files, Gnash has an option to add overlaps (as when one meter is being replaced by another so that one data file dribbles to and end while another one starts), plus the default option for Input.BadPrevails is false, so that if one data file trails off with FUBROM codes while another starts with say zero values, or vice-versa, the zero values will be chosen.
Panak’s action was to present summations (of say zero) with FUBROM codes as decorations to adjust your interpretation of the summation, while Gnash presents either a value or else a ? signifying that one (or more) of the components was bad.
So much for single-channel printometers. There are also many multi-channel printometers, that print sets of values for each half hour, and in various layouts. Again an example:
AUTHORITY 77 New Zealand Steel

PRINTO TYPE L&G

*1 Glenbrook T4 Reactive *1 Glenbrook T5 Reactive

*1 Glenbrook T6 Reactive

1/4/95

 7354 7354 19526 7277 7219 19449 6413 6393 20103 6892 6912 20333

 7584 7584 20602 4070 4320 21475 6413 6644 20957 7162 7104 20237
This is a three-channel pintometer, though a fourth position is empty. The asterisks are in column one, or, later than column one of the data file. In the second case, this means that the entry refers to the second column of printometer output. At the end of every half hour, this printometer is set to print three numbers, which will appear in two columns. That is, there are two numbers per line. It will print two numbers (for T4 and T5) on the first line, followed by one number (for T6) on the second line; these are counted as channels one, two and three, left to right and top to bottom. And for the next half hour, the same again. Each paper strip (actually, aluminium foil and paper for Landis & Gyr printometers) would thus contain two columns of numbers, but the second column would have numbers only on alternate lines. If pasted to a (big) card, the seven strips of a week would result in fourteen columns of numbers per card.

Normally, the punch hussies would enter these data by starting with the date then going down the first column, entering channels 1,3 1,3, etc (i.e. for T4 and T6), then on reaching the bottom for the day, start a new line with the text “COL2” just as if it were a date, and then enter the values of channel 2 (i.e. for T5) until the end of the day. Then start a new line with the next date and the second strip of tape.

However, the Landis&Gyr printometers did not print a compact report for each time so the tape for a day was long and was usually still on a roll, not cut and pasted to a sheet. Thus it was inconvenient to wind back from the base of the first column back to the top to enter COL2’s data for the day, and so it was agreed that this type of printometer should have the attribute “strung”, which means that all the channels are to have their numbers entered one after the other, strung along the line. Accordingly, for this case, the three values per half-hour would be entered as T4 T5 T6 T4 T5 T6, etc.

As before, the correct number of values per day is required, and checked for. However, this check can only be made with reference to the appearances between occurrences of a date (and any “COL2”), so if a datum were omitted and another datum entered twice, etc. there would be no complaint. Similarly, locating missing or extra values requires a lot of careful counting. The maximal L&G collection on one printometer was eight channels (for the main trunk electrification stations: phases one/two × in/out × active/reactive) but ChannelLimit is set to 16.

And the older printometers, on their last legs, were replaced by Landis & Gyr printometers, then in turn their data were recorded electronically. The example in fact is the result of such electronic data being transferred from the data-collection system to the Vogel mainframe where another programme, Ellangee, read, checked, collated and added the data to files in the existing printometer style. Some data arrived by cassette tape, some by paper tape, but most was via telephone. To aid human legibility, Ellangee wrote the date on a line of its own, and separated the triplets of values by two spaces while reducing the chance that it would end a line in the middle of a triplet. Thus the slightly more regular form. And likewise for other counts.

Thus, the printometer data format can be used in a simple way for simple data, representing a common factor once, identifying names once, mentioning dates once per day, and representing times implicitly. With intelligent use, the resulting data file can be both legible and compact.
Plotstyle
Despite the simplicity of the printometer style, especially if no error codes and messages are involved, it was not always convenient to deal with it, and anyway, the result of some combination might be desired as input for some other programme, preferably not also having to deal with the details. Accordingly, Panak was extended by the Heave command, that would write the values of some data series (possibly the result of a complex combination) to a disc file either in printometer style or in a particulary simple fixed format. Although it would include the error codes, being fixed format, it would be easy to skip them on input by the limited programme. Other options allowed free-format, and the error codes could be edited out. Because the major use of this scheme was to feed a programme able to draw graphs on some plotters, this style was called “Plotstyle” and an example follows:
00000000,0,0,Authority,ARAPUNI,Generation at Arapuni Power Station,as at Monday, 2'nd February 1998 2:27:43.255 pm.

19870401,1,48,71000,71000,71500,71800,81700,92000,92300,92300,91200,91200,90300,93200,99200,98800,98500,99300,115800,100000,102300,101500,103500,98300,97800,101500,97800,100300,100300,101000,100800,101200,101200,101000,100500,100700,101500,111300,121800,122000,121200,121300,121800,122700,123500,122800,117200,100700,104800,105700

19870402,1,48,105300,87300,80000,79500,78700,79500,78500,79500,79500,79800,79200,79700,96700,101000,99700,101300,102700,104500,100500,102500,103200,102000,102300,101800,100000,105200,114300,111500,111700,112300,113500,110500,111000,110800,110800,110700,110800,110000,109800,109000,109800,110200,109000,110200,111000,111200,111000,112300
This shows only the first three lines, which are long – note the redundant trailing zeroes for each value – the printometer style version would use a scale factor of a hundred. There is one record per day.

This format is recognised by Gourmand by the first line starting “00000000,0,0,AUTHORITY,”, which text is followed by a channel name, and a title, plus a date as provenance. Unfortunately, the log file maintained by Panak that would make plain just what was the definition of the data that made up “Arapuni” has been lost in the various organisational confusion, as have the data files defining certain combinations. This is not so important for Arapuni but a series declared to be say “South Island Generation” is of uncertain composition.

The rest of the format is straightforward. Free format with commas between fields has been selected, and the error codes have been removed. The first field is of course the date, in the form YYYYMMDD with leading zeroes for the month and day number as needed. The second field has a 1 for work days, and a 2 for weekend/holidays according to the schedule of national holidays used by Panak. You may have a more complex scheme in mind,and indeed, Gnash uses one, but for this format it expects and checks that only these two value are used and for the right days.

The 48 is of course the number of values to a day and will be 46 or 50 appropriately; this is checked. Likewise the correct number of values must follow or else. Although the example uses only integers, any value is allowable, even negative. Gnash also checks for the appending of FUBROM codes and A/G – that is, evey value could be followed by two symbols (before the comma), the first the FUBROM code (or “?”) and the second the Approved/Guess/? indicator. But, as mentioned, all the surviving data files in this form have had the codes removed.

As with the printometer format, this format is simple though preparing the workday/holiday indicator in order to avoid tedious complaints might be tedious. Given an incoming data file of similar form, simple editing might well render it readable. An even better option would be to describe the format to the data supplier, who might be able to produce it with minimal effort, if asked. Come to think of it, I could introduce an alternate version lacking any need for the workday/holiday code field, if plied with sufficient chocolate fish. So, plan ahead.
Dump

The data format produced by Gnash’s DUMP command is also acceptable as input for Gnash (via subroutine pmuD), and as the simple scheme is quite flexible, it may be that an incoming data file is actually in a form that can be made suitable with only a little effort. A little effort expended on pre-planning might mean that a data file would be elicited that already is in a suitable form.
The layout is multi-column with commas between the columns, and successive lines offer sets of values for successive times. That is, multiple data series are supplied, in columns, with each line offering the set of values for all columns for that time. The columns do not need to be aligned, but are accepted in free-format. File Asample.csv is an example.

Because this format is produced by the DUMP command and it produces a date in the first field with the name “Aux.Date”, if the name of the first column starts “Aux.” then subroutine Gourmand will invoke pmuD to parse and read the data file. The dump command however can be directed not to produce the date column or indeed any auxiliary variables, and anyway, data files that come from another source may not use such a name, nor may it be convenient to arrange that the first column’s name start “Aux.” Provided that Gourmand does not decide that it has identified the format as being dealt with by some other routine, then as a last throw it will invoke pmuD in the hope that something will come of it.

Thus, aside from comment lines (identified by a % at their start) and blank lines, the first two lines are special. The first line gives a set of column names, and the second line a set of column titles, though this second set is not required. Being texts, these entries should appear in quotes, especially for the titles which might contain commas and apostrophes and much else. If a quote is needed within a text, then two quote characters in a row signify a quote character.

The column names are inspected in the hope of finding needed information, such as “Date” and “Time”, nor need they be in a particular order. If a particular column in your file is unwanted, then aside from using programme Fillet to produce a file lacking it, you can prefix its column name with a minus sign. Many alternatives and combinations are recognised. Possibly even yours.

Determining the correct date and time for a record’s data is crucial, and in the floundering around to achieve this, some sixeen types of data are recognised via suitable column names and many must be used in combination so as to determine both a date and a time. It is also possible to have the date and time specified in more than one way, as by supplying a DayClock plus a Date and a Hhn for example, and if so, checks are made for agreement. The current list of recognised types is as follows:

	Column Name
	Example Value
	Offset Unit
	Feature

	DAYCLOCK
	40632·5
	Day
	Represents noon, Thursday, 31’st March 2011.

	YYYYMMDD
	20110331
	Day
	for 31/3/2011 (this is for a date only)

	YYYYMMDDx
	20110331·5
	Day
	represents noon, Thursday, 31’st March 2011. The x might stand for HHMMSSffff... but if nothing or HH or HHMM or HHMMSS it may be followed by a fractional part after a decimal point.

	YYYY-MM-DD
	31/03/11
	Day
	or -03-, etc. (This is the ISO “standard”.)

	DATE
	31/03/11
	Day
	or /03/, etc.

	DATE TIME
	31/03/11 18:00
	Second
	Special dispensation: space, not comma.

	YEAR
	2011
	Itself
	

	MONTH
	3
	Itself
	

	DAY
	31
	Day
	

	HOUR
	12
	Hour
	

	MINUTE
	0
	Minute
	

	SECOND
	0
	Second
	allows a fractional part of seconds also. (No “thirds”)

	HHN
	24
	Itself
	Half hour number. (the half hour ending at noon)

	TIME
	12:00:00
	Second
	and 12:00:00, fractional parts, am/pm, a.m., etc.

	HHMM
	1200
	Minute
	allows fractional minutes.

	HHMMSS
	120000
	Second
	allows fractional seconds.

Note that except for the DAYCLOCK and YYYYMMDDx styles, there is no provision for a combined date and time in one column. Dates can be specified in many ways, and times also in many ways, so the number of date&time combinations would be the product of those counts (and more: date&time or time&date? Separated how if not by a comma?), whereas by having separate columns for the date and the time means that the combinations are not a problem, nor does their order matter. This may mean that you must edit your incoming data file to split the date&time column into two columns. However, the form DATE TIME is made available to reduce the whining.

The DayClock value should aim for the centre time of the half hour, while the others should be for the time of the end of the half hour. The HHn value is a simple count and thus is implicitly for the end of its half hour. Some systems are incapable of generating a time of midnight (as in 24:00), so a time of 0:00 the following day is accepted as equivalent even though the date has changed. Watch out, because some systems deviate from the standard behaviour of reporting the time when the measurement was recorded (i.e. at the end of the interval) and instead give the time of the start of the interval so that effect preceeds cause. To deal with this and similar annoyances, there is a facility to specify an offset. For instance, the day number of zero is for Sunday, 31’st December 1899, and your day number zero may be aligned with some other date. In principle, the data file could be changed to use the desired alignment, but this usually would require a great deal of effort because of the rules for carrying: sixty minutes in an hour, twenty-four hours in a day, and who knows how many days in a month. Possibly, the data supplier could supply data with a correct usage, but more likely they will decline to shift a finger.

To reduce the unhelpfulness, there is provision for every type to have an offset. Instead of a column name of just “DayClock” there might appear “Dayclock +27” or “Dayclock -3·3”, and the specified offset (with sign) will be subtracted from the encountered value to obtain the result that will be worked with. Although this has the form of an arithmetic expression, the sign is associated with the value so there should be no space after the sign before the digits of the value. The units of the offset are what seems appropriate for its type, thus seconds for Time, days for DayClock, etc. If for example the start time of a half-hour were specified you would want an offset of -30 minutes to be subtracted to attain the end time of the half hour. If the start times were specified via separate Hour, Minute, and Second fields, you would adjust their column names to be any one of “Hour -0·5” or “Minute -30” or “Second -1800” or indeed any linear combination with the same effect.

The offset values may be documented by following their value with the name of the unit as appropriate, and the first letter each of “seconds”, “minutes”, “hours”, and “days” is recognised. Thus, instead of an offset of -1800, you could have -1800s or -30m and appropriate conversions will be made. These conversions cannot be made for some of the offset styles because they do not involve a fixed number of seconds: they are marked with “Itself” in the table.

The daylight saving caper imposes its usual premium of confusion and trouble. Gnash sticks to the civil clock and so expects times (and dates) to be those as shifted during the daylight saving period. Data may however be supplied without this shift (for instance, using GMT), which is why subprogramme pmuD that reads the Dump format back in has the offset facility extended to every column type. Careful thought, confirmed by testing is in order.

The daylight savings transition days are of course particularly troublesome. Again, pmuD expects the civil clock to be used, but, because consecutive records represent consecutive times, it does not require this but attempts to follow the transitions both within the day and for subsequent days. Data suppliers who fail to follow the civil clock correctly will also decline to make any effort at doing so, leaving one with a data file that must be adjusted. This is a simple clerical task, and computers excel at simple clerical tasks, so, why not have the computer do it? Ah, but the data supplier will still not exert themselves. So, now you know another reason for the name Gnash...

Anyway, suppose that a data file has been supplied that uses winter time throughout, that is, its specification of times does not follow the daylight saving lurches. If the first data record for the file specifies a date and time outside the daylight saving span, then its time is aligned with the civil clock and no offset is needed. Later in the file when the shrink day is encountered, pmuD will note the lack of the gap (data are present, and their times march on without a lurch) and will make adjustments, preserved for following days until it encounters the stretch day (in turn lacking its lurch: the data are present, but their associated times do not lurch) when it will undo the adjustment, and so onwards.

On the other hand, if the data file’s start point is within the daylight saving span, then its stated time is one hour behind the civil clock’s time for the event (because everybody is getting out of bed one hour early) and the required heading for a time column is “Time -3600” or “Time -1h”, etc. This will mean that a stated time of 6:00 will be converted to 7:00. Suppose that sunrise is at six a.m. as spring begins. When daylight saving commences, the sun still rises at about the same time, but we get out of bed an hour early and call the (seemingly later) time of sunrise seven a.m. on the civil clock even though it was six a.m. the previous week. Similarly, sunset which was at six p.m. will now be declared to be at seven p.m. As before, equipped with the correct time alignment to begin with, pmuD will follow the subsequent transitions and all should be well.

Should the data have been supplied with GMT (or, some version of UT, the modern name) then the required offset values are -12 hours for a winter time start, and -13 hours for a summer time start. So NZST = GMT + 12hours, and NZDT = GMT + 13hours with of course the appropriate date rollovers. GMT is not the same as the civil clock time in Britain, which is also messed about with by daylight saving. GMT is not messed with, the year around. Except for “leap” seconds.
Terminology can be ambiguous. New Zealand started off with NZMT for “Mean Time” then the early proponents of daylight saving had their way and NZST was introduced for “Summer Time”. During WWII, NZST was extended to year-round use, then after the war this was made permanent and “Summer Time” became “Standard Time”. Then in the 1970s the daylight savings proponents had a fresh resurgence, and NZDT was introduced as “Daylight Time” while NZST remained as “Standard Time” except only for outside summer. In other words, the New Zealand standard for time is not N.Z. Standard Time, but NZST in winter and NZDT in summer.

So when someone says that “New Zealand Standard Time” is used, does that mean the standard for time in N.Z. (being NZST and NZDT with transitions, the civil clock) is used, or, does that mean standard time (NZST) throughout the year , which is not the N.Z. Standard for time, is used?

So much for the arrangements for fiddling the times. The data also are subject to fiddling, because just as with time specifications, data suppliers are simply incapable of using standard units or sticking to the choices made. Thus, a particular data series may be supplied with different units in different files. These differences could be adjusted via a corresponding mess of PATCH commands that would have to be applied the correct number of times to the correct spans of the data with the usual risk of error as tedium grinds inwards. Instead, suitable adjustments could be incorporated into the deviant data files – at of course the cost of editing them but with the advantage that each corrective action is in the same file as the data to be adjusted by that correction, not in some separate file of PATCH commands.

The idea was an extension of the offset opportunities for the time columns into a linear function: y = ax + b for some constant values for a and b, but as with the time offsets, they will be inverted. Suppose you have a data series Potatoes, measured in Kg, and suddenly there arrives a data file where the values are specified in “sacks”. After some struggle, you establish that there are 66·6Kg to a sack, but, the resupply of the data file with units of Kg is just too much trouble, and there is no support for the suggestion that this should be done nor that established units should be used as standard.

Accordingly, in the data file where there is a column headed “Potatoes”, you edit the file to have instead “Potatoes/66·6”. The notion is that SuppliedValue = DesiredValue/66·6, and you wish to elicit the desired value from the supplied values so that the incoming data may be merged with existing data all in the same units throughout. This situation will be recognised by pmuD, which will invert the expression and calculate SuppliedValue×66·6, and all will be as desired. Should you wish to dump data in units of sacks, you need merely use Dump Potatoes/66·6 to produce matching output.

Somewhat later you notice data files in which there are negative values, and eventually it transpires that someone had miss-set the zero value of the weighing apparatus so that a load of zero sacks weighed -0·1 sacks, or -6·66Kg. Thus, SuppliedValue = DesiredValue/66·6 – 0·1. For this situation, make the column header read “Potatoes/66·6 – 0·1” and pmuD will invert the expression and calculate (SuppliedValue + 0·1)×66·6.

In other words, the desired value (in Kg) has been measured on a scale with 66·6Kg to the sack, and alas, the mis-zeroed sackfull reading is a tenth of a sack low. Invert this by adding on a tenth of a sack, then convert to Kg by multiplying by the weight of a sack in Kg. Note that the offset is not 6·66KG, but is in the units of the SuppliedValue.

This amounts to the ability to reposition the zero and change scales, as you might with centigrade, Fahrenheit, Réaumur, Rankine and Kelvin temperatures. More complex functions are not contemplated, and for time conversion, rescaling is not accepted. Similarly, attempts to specify an offset of zero or a scale conversion factor of one (or zero) are rejected as they are pointless and so if seen probably mark some confusion somewhere. A further restriction is that column names must not contain symbols such as +-*/ lest misinterpretation result. Remember, the column names of data series should look like the names of variables used in computer programming and the like.

Subroutine pmuD thus accepts a large variety of usages in this columnwise form and so many data files may prove readable with just a little editing. With some forethought as to the format of an incoming data supply, it might be possible to avoid any editing of the input files.
Bloat
With the abandonment of the Vogel computer ventre came conversion to new computer software, and new formats were introduced for the supply of half-hourly data. Many disc files were presented, but no documentation describing their format and usage, so guesswork ensued. The first format encountered can be exemplified by the following first record:
GOR0331,TPCO,GN,TPNZ,kWh,X,F,01/01/97,5458,4969,4620,4280,4081,3855,3760,3460,3356,3449,3535,3677,3871,3917,4080,4527,4495,4663,4862,5012,5008,5184,5266,5373,5409,5102,5098,4835,4706,4485,4510,4617,4553,4746,4938,5056,4974,4695,4642,4514,4460,4413,4556,4745,4828,4762,4249,4010,217661
There is no header line. The interpretation is that a number of name-like fields are followed by a date field, then by 48 half-hourly values, then a checksum of the data values. The next record repeats the name and is for the following day, and so on, until a new name is introduced, etc. Thus, there is heavy repetition of the lengthy series name, and thus the appellation “Bloat”. The number of nameish fields remains the same throughout the file. There is no information on their variability nor length, and Gnash allows up to 66 characters as the maximum length, smaller limits having proven too small on later encounters. There is no indication as to whether capitals and lower case letters are to be distinguished; Gnash regards them as equivalent. On the other hand, sometimes spaces appear in name fields either at the end of a name field part, or in the interior of such texts; Gnash deblanks the name sequence.

Further inspection shows that on the daylight savings changeover days, there are 46 or 50 values to a line, as is proper. Then some files were found that did not contain a checksum at the end of each line, and others where the checksum was present on some lines but not others in the same file. Accordingly, a checksum need not be present, but if identified, it is checked against the sum of the day’s values. Still further variation has been encountered, whereby null values are tacked on the end of a record, or before the checksum. This occurs because the data file producer is incapable of organising the correct number of half-hourly values to a line and so sends forth always fifty with the extra values being represented by null fields. Thus, the above line might end
...,4249,4010,,

48 values, two null values, no checksum,
...,4249,4010,,,
48 values, two null values, a null checksum,

...,4249,4010,,,217661
48 values, two null values, a checksum.

Again, this variation can occur within the same file, and Gnash wastes time and effort ignoring surplus null values, providing they are null. Not accepted is yet another variation whereby on the daylight savings shrink day, instead of 46 values being provided there are two additional null values inserted following the fourth half-hourly value, being for the non-existent times of the shrink day.

Although the example file offers only integer values, later data arrived with fractional parts, indeed in many cases a spurious fifteen digits were supplied. Even less sensible were values such as 1·70660434193274E-31, presumably different from zero. Because decimal fractions are usually recurring sequences in binary (just as one third is in decimal), checksum values are unlikely to match the summation of the constituent values. To abate the flood of spurious complaints, the ratio of the checksum difference to the day’s average value is compared to Gnash’s internal variable Input.Note.ChecksumDiffTolerance, and this value may be changed from 10-6. It may be less trouble to do without checksums for data with fractional parts, but they have their use, as when a data supplier decided to change the four digit year 2010 to 10 and the fool did so by changing all occurrences of “2010” to “10”, thereby also changing values such as 320105 to 3105.

This style of {name fields}{date}{day’s data} has been used with differing numbers of name parts, so for the example, because there are seven name fields, this format is termed “Bloat7”. There also appear data files with six, five, four, three and two name-parts. This can be determined by identifying the field containing the slashes of a date and presuming that the fields up to that are for name parts. However, this cannot be taken as a general solution, because of ...
Dribble
So far, all the data formats have placed the entirety of a day’s values on one record (in the case of the printometer data, this could be done because Gnash accepts long records), but now comes a scheme whereby each record is for a given name and date with one time only. Each such record must name its date and as well its time so that values dribble in, thus the appellation. No documentation has been supplied to define this format, its usage or interpretation so guesswork ensues. An example:
ABY0111,01/10/1996,1,55.14,,F

ABY0111,01/10/1996,2,43.95,,F

ABY0111,01/10/1996,3,42.71,,F
etc.
ABY0111,01/10/1996,48,41.85,,F

ABY0111,02/10/1996,1,42.99,,F
There is no heading. The date is in the second field, so this can be declared to have one nameish field at the start, similar to the Bloat format. There is no statement as to the maximum length of this field; so far Gnash’s allocation of 28 characters has sufficed. The next record repeats the name and repeats the date, and evidently, the time is specified as a half-hour count, 1,2,3,4...48. On the daylight savings changeover days, the count tops out at 46 or 50, as is proper.

The datum is in the fourth field. Various files present data ordered by name, by date, or by time, or apparently at random. For each name, Gnash collates the values on a whole-day basis, and for each name checks that a value has been supplied once only for a given date and time. For each name, hopefully, all the data for a given day arrive before data for a different day start turning up. Once a day is started, it is expected that it will be filled out, otherwise, BAD values are not replaced. So far, it has not happened that a value omitted from one data file’s collection has been supplied from another data file. On the other hand, there are occasions when a value for a particular name, date, and time is changed by a later value for that name, date, and time in the same file.

In many files, the null field is filled by what is obviously a timestamp (date and time) though in a variety of formats, some of which are unintelligible. What this timestamp represents is unknown, but if present and readable, its value is saved along with the datum.

There also arrive files in which the fourth field does not contain the datum but instead a code letter such as “F”, with the datum following as in this example:
ABY0111,1/04/2001,1,F,59.34,Y, 2/04/2001 15:10:31
and later,
ABY0111,01/01/2004,1,F,31.2,02/01/2004 11:13:43
These variations (and others, such as a conversion to am/pm clock times) can occur within a single data file and are a nuisance. Moving the code letter to be amongst the nameish fields (as with the Bloat style) would help, as would sticking to a consistent arrangement. A communication with the data supplier opening this issue has been ignored, so onwards.

Also appearing in the style of one time per line were data files having not one datum but two per line, such as the following:
BEN2201,01/06/2008,1,24.73,4,03/06/2008 11:19,F
Initially, there were no headings for these data files, but then appeared files with a heading starting GIP_GXP_FULL,TO_CHAR(TRADING_DATE,'DD/MM/RR,TRADING_PERIOD, and yes, with unbalanced brackets and unbalanced apostrophes used as quote marks. Subroutine Gourmand was modified to recognise the text of the first field, and to invoke subroutine BloatBloat with an instruction that this file has two values per line, not one. Thus, the first style is called Dribble N1V1 and the second Dribble N1V2, with this heading being retrofitted to the earlier files. This means one name field, and one (or two) value fields, the (optionally-appearing) timestamp not being counted as a value field in this regard.

Then data files turned up with a different heading, which appeared to have become the new standard, starting Grid_Exit_Point,Trading_Date,Trading_Period, so this new text for the first field was taken as the identifying mark and the earlier files re-retrofitted with the new heading. This heading also supplied text for the data columns (including the timestamp), so these texts are appended to the name part when identifying the incoming data series.

Another usage of the one-time-per-line style handled by subroutine BloatBloat is as follows:
Bus,Cust,Type,Party,Unit,XM,F,Date,HalfHour,kWh,TradingPeriod

GOR0331,TPCO,GN,TPNZ,kWh,X,F,1/1/2001,13,5091,298093

GOR0331,TPCO,GN,TPNZ,kWh,X,F,1/1/2001,14,5248,298094
This offers a header, so its identifying text is taken to be “Bus” and it is declared to be of style Dribble N7V2 – there are seven nameish fields before the date and two values per line, with no timestamp. The text “,TradingPeriods” could be removed from the header, in which case the last field would be tasted as a timestamp (e.g. as above), found unintelligible, and ignored.

Notice that its seven nameish fields would otherwise suggest that it was of style Bloat7, but subroutine Bloat would expect to find a day’s data on each line and be dissatisfied. This is why when attempting to select the appropriate data-reading subroutine, subroutine Gourmand does not rely only on the location of what appears to be a date field.

The header’s fields are called Pieces, and part of the inspection is as follows, in order:
Bloat7
Piece(1) = BUS NAME

Bloat7
Piece(1) = BUS_NAME
Ah, consistency.
Bloat5
Piece(1) = POC_CODE

Dribble n1v2
Piece(1) = PRICE_

Dribble n1v2
Piece(1) = GRID_
if Piece(4) contains _6

Dribble n1v1
Piece(1) = GRID_
otherwise
Dribble n1v4
Piece(1) = ARC_

Dribble n7vx
Piece(1) = BUS
if Piece(8) = DATE, x = nPieces - 9

Many data files have no header, so the first record is a data record, and its fields are inspected to see if they might contain a date, identified by there being two slashes in the field:
Dribble n1v1
Date(2)?
Bloat2
Date(3)?
Dribble n3v1
Date(4) and six pieces per line?
Bloat3
Date(4)?
Bloat5
Date(6)?
Bloat6
Date(7)?
Bloat7
Date(8)?
Bloat8
Date(9)?

The last few may appear to be systematic, but there is no system nor attempt to arrange one. As has happened, at any time, a format may be changed or a new format introduced without any attention to existing formats. If the manifstation appears to be merely another eructation then ad-hoc editing may suffice, but if the deviation persists then there follows a scramble to rearrange the guesswork.
OnerOffer
This is another example of the one-time-per-line style, but rather than employ subroutine BloatBloat with its struggle over the fourth field possibly containing a code letter rather than a number, subroutine OnerOffer is invoked by Gourmand if the text in the header’s first field reads “Company” (ignoring capital/lower case distinctions), but this is not entirely straightforward, as some headings have been supplied with “Company” and others with “Company_” so the test is actually the first seven characters after any leading spaces. Two usages have been encountered:
CTCT,ABY0111 ,29/05/2002,1,1.306,2000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28/05/2002 07:50:23,28/05/2002 07:53:22
and
CTCT,CYD2201 ,CYD,0,29/05/2002,1,420,3000,3000,70,5,1,25,10,110,139,120,200,200,28/05/2002 21:56:43,28/05/2002 21:58:03
The first has two fields before the date, and the second has four; after the date is the half-hour number, then follows a set of values, followed by a pair of timestamps. Subroutine OnerOffer scans the header’s field names, requiring to find one with the text “Trading_Date” and in the next field “Trading_Period” (both disregarding capital/lower case distinctions and leading or trailing spaces), these otiose texts being those encountered in the data files supplied. Fields before the date are declared nameish, and despite the second example’s fourth field containing what looks like an integer, it is treated as text along with the other nameish fields. The allowance for the length in the nameish fields is twenty-eight characters, which has sufficed so far, and as before, the resulting compound name is deblanked and converted to capitals. Again, spaces appear in the nameish fields to no apparent purpose, and “007” will not have the same effect as “7”.

This format is not as bloated as the BloatBloat style because for each appearance of name, date, and time, evidently there are many values, and two timestamps as well. These values are identified by appending the text from their entry in the header line to the name produced from the nameish fields at the start of each record. A data field is expected to contain a number except for the timestamp fields that are identified by inspection of the header. Appearances of “CREATED_DATE” and “LAST_AMENDED_DATE” are recognised, again ignoring capital/lower case and leading or trailing spaces. A less-specific scheme would be to recognise “DATE” only.

As with BloatBloat, subroutine OnerOffer expects that for every name, every day’s set of values will be filled out, with one appearance of an incoming value per slot.
Sporadic
This data format has caused a great deal of frustration, exacerbated by the small amount supplied. It was introduced with vague hand-waving waffle, and a refusal to obtain any documentation. Then the format was changed, and early data resupplied in the new format; despite this revision there was still no description supplied so a fresh bout of handwaving ensued. The subroutine to handle the old format was abandoned, and its revised version now handles the likes of
"Trading Date","Trading Periods","Type","Description"

01/07/1998,"36-37","Branch Constraint","COB_UTK1.1 on its 24MW limit"

06/07/1998,"17-24","Branch Constraint","COB_UTK1.1 on its 26MW limit"

10/07/1998,"38","Branch Constraint","TKU_WKM1.1 & 2.1 on their 200MW limits"

11/08/1998,"1-2,47","Branch Constraint","BEN_T2.L2 & BEN_T5.L5 on their 200MW limits"
Subroutine Gourmand identifies this style via the heading’s first column reading “Trading Date” - with or without quotes appearing. The data suppliers have proved incapable of supplying data with the texts or with the ordering of their own choice of data format. Different column names can be handled if the order is the same, and different column orders can be handled if their column headings are the same, but not both.

Parsing the names of the data series was likewise described with handwaving, and it turns out that the actual usage in the files often cannot be fitted ino that scheme. Queries get nowhere, and the data supplier declines to explain the data format they are supplying, nor will they answer questions, nor will my managers exert themselves to require that they do so. In 2011, still more bizarre names were introduced and with the continuing refusal to elicit any explanation of them, there is no possibility that guesswork might come up with a coherent name scheme, so Gnash was twiddled to suppress its objection to stupid names. The only apparent objective is “that data files be read” - well, they are.

Enough.
Witless
Previous formats have moved from one record having a whole day’s worth of data, perhaps for a few names together, to one record having a day’s worth of data for only one name at a time, to one record having data only for one name and day and time at a go. This format lurches in the other direction, one record having data for a single name but up to a year’s worth of half-hourly values at a go. It starts with a header record that gives for every field the date and time of that field, so there are up to 17,568 half-hourly data fields along a very long record. So long that many systems are incapable of reading the format! Possibly, this scheme may be convenient enough for a day or so worth of data, and there are provisions to start and stop the supply not at midnight, but for larger quantities this scheme is less than convenient. For Gnash however, extending its record scratchpad to 246,810 characters has sufficed.

An example, with many columns elided (“etc.”), is as follows:
Country,Island,Node,MEAN Energy,01AUG2010 Daily ENERGY,01AUG2010 01,01AUG2010 02,01AUG2010 03, etc. ,01AUG2010 47,01AUG2010 48,02AUG2010 Daily ENERGY,02AUG2010 01,02AUG2010 02,

NZ,,,175.66068,3727.3505,156.688,156.533,156.214,etc.
NZ,NI,,175.66068,3727.3505,156.688,156.533,156.214,etc.
NZ,NI,KPO1101 KPO0,59.85483,1027.0455,41.481,41.557,etc.
NZ,NI,WKM2201 MOK0,115.80585,2700.305,115.207,114.976,etc.
As usual, no description is provided, so as usual, guesswork. Evidently, each line starts with a sequence of three nameish fields, which may be null, followed by the values. Possibly as an attempt at international generality, each line starts with NZ, at least for data concerning New Zealand, the only data available. The second name field is either NI or SI, corresponding to which island is involved. Presumably, there is no expectation of data from locations in Stewart Island nor the Chatham islands. The third name field appears to be in two parts, separated by a space, so interior spaces will be converted into underline symbols, though leading or trailing spaces will be trimmed off. There is no statement as to the limits on the sizes of these names, so Gnash makes allowance for up to 66 characters for the whole sequence.

The line with the name “NZ,NI,” seems to offer half-hourly values that are the summation of the selected names that fall in the North Island, not the actual North Island total, and “NZ,SI,” does not appear because no “SI” series have been named in the example run. The leading line, “NZ,,” appears to be the NZ summation of all selected series, not some sort of New Zealand total. Should another data file over the same date span have a different selection of names, these totals will have different values for the same names; it will be up to you to deal with the resulting mess.

Reading the header horizontally, the field with “MEAN” turns out to be the average of all the values in the time span, divided by two. This in turn suggests that the values are powers, not energies, as the time interval is half an hour. As a gesture towards generality, Gnash recognises the appearance of the word “energy” in the column header, and if found (as it is in the example) introduces a scale factor of 0·5 for its checking. Moving on, it now appears that a sequence of day total, then that day’s values repeats across the date span of the record. Again, the appearance of the word “energy” introduces a scale factor of 0·5 to the summation of the day’s values. And on the daylight savings changeover days, there appear 46 or 50 half-hourly values for a day, as is appropriate.

Again, because decimal fractions appear, the comparisons between the supplied summation and the sum of the constituent values are spoiled by the imprecision of using binary floating-point arithmetic for decimal fractions. Here, the differences are directly compared to the value of Input.Note.ChecksumDiffTolerance, rather than as a ratio.

Nothing is said as to the unit, but guesswork suggests that the values are megawatts.
Staircase
This format is intended to represent series having long runs of equal values, or “steps” and so each line contains a start timestamp, and a value, which value will remain in force until the next step change. If the times of the steps are regular, Gnash’s CONCOCT command may provide a convenient alternative, but in general the steps are at irregular times. An example (with regular steps):
Step +12h,Value

CPI Consumer Price Index, Quarterly, from the Department of Statistics New Zealand.

 1/ 4/1914 15.778220

 1/ 7/1915 17.072034

 1/ 7/1916 18.428961
This is recognised by the first word being “Step”, optionally followed by the word “time”. The +12 is an offset applied to the timestamps and its unit is hours because of the “h” - other options are m and s for minutes and seconds, otherwise “days” is the assumed unit. This offset is subtracted from the incoming values. If a step’s time of day is not presented then the middle of the day is chosen, which is twelve hours on from the start of the day. The supplied timestamps are all just dates, and the file could be edited to have a time following the date to complete the timestamp, but it is easier to allow the middle of the day to be inferred, and then have the offset subtracted since this means a special header line but no change for every date line. Thus +12 hours are subtracted, and thereby the start of the day is indicated. There are further time details to describe, but not in this example. The second entry on the header line concerns the treatment of the values: if there appears a + or – or ±, then should later on a value appear with a sign, it will be added to the previous step’s value rather than being taken as the value itself. File NominalGenerationCapacity.txt has an an example of this usage.

Following the header line is a line that does not conform to the indications of the header line. It is instead naming the data series (as “CPI”), and after a space, supplies a title for the series. This is the same protocol as with all data files: some sort of name for the data series, along with a descriptive title.

Following this come the steps, one per line. They must start with a digit lest they be taken as the name of a new data series. Evidently, a step consists of a date (not followed by a time here), and a value. There may be a comma separating the fields, but if not a space will do. Eight digit precision in the example is rather dubious, but is as supplied.

Because the value of a step continues indefinitely, the last step may go on for ever. To prevent this Gnash will truncate the generated data at the end of the year in which it is reading the data file. You can explicitly stop a series by specifying a step with the desired timestamp and a value of . (full stop).

If a time is known for a date, then the date is to be followed by an @ symbol to signify that what follows is a time, rather than the value. There is a special allowance for vague dates in this format: if no day is specified then it is day fifteen, if no month is specified then it is month six, just as if there is no time specified it is taken to be the middle of the day.There is a fair amount of flexibility so for example,
 20/9/1981@1:50pm . Canal failure! Wipeout!
would be acceptable. Here, the value is a full stop, corresponding to what happened. Amongst the flexibility as to the specification of times, the “pm” could be decorated with full stops as is proper, thus there must be a space after the time specification so that the value’s full stop is recognised. The text following the value is ignored by Gnash.

As a special concession for another data source, following the header’s key word “step” may appear “YYYYMMDD”, signifying that format for the dates. Unlike pmuD, further variations have not been introduced. This indication must precede “time” if present. And in a further concession, if there appears the word “GMT” or “UT” (which must follow “time” if present) then the timestamps will be taken as being GMT times (and dates) and as Gnash works with New Zealand local time, the generated data will have the steps at the equivalent New Zealand time because Gnash will handle the transitions. Subroutine pmuD deals with a regular half-hourly sequence of times and can follow a transitions through the stretch and shrink days as they happen, but subroutine Staircase confronts irregular times so a step sequence will not necessarily show the transitions, indeed there may be no steps in the changeover days at all. Thus, because subroutine Staircase can’t guess, it must be informed. Correctly, for correct results.

Further opportunities for confusion are provided for the values. The name of the data series could be given as if a part of a simple arithmetic expression, as in

Height/12 + 3 Shoot height in inches.

Suppose a bamboo shoot’s height is measured in feet and decimal fractions of a foot on a scale relative to the floor of the laboratory to give a value H. The values stored will be (H – 3)*12 – the inverse of the expression – as for the case that the height above the ground surface in a barrel (three feet above the floor) in inches is of interest. As with the times, the idea is that the desired value is modified according to some expression to give the value as presented. This expression is then inverted to convert the presented value into the desired value.

Arbitrary expressions are not handled! The options are + or – shift, and a rescaling by multiply or divide, or both a rescale and a shift. These arrangements are quite separate from the simple rescalings provided by the entries in the alias table.
CliFlo
For the past century and more, data on rainfall, temperature, etc. have been gathered. For New Zealand these data are now controlled by the New Zealand National Institute of Water and Atmospheric Research, which makes them available via its CliFlo system, accessible through the internet address http://cliflo.niwa.co.nz/ with conditions laid out in http://cliflo.niwa.co.nz/doc/terms_print.html
This system produces data in a variety of formats, but one example is as follows:
Station information:

Name,Agent Number,Network Number,Latitude (dec.deg),Longitude (dec.deg),Height (m),Posn_Precision,Observing Authority

Baring Head,18234,D14482,-41.407,174.867,79,T,Niwa

Note: Position precision types are: "W" = based on whole minutes, "T" = estimated to tenth minute,

"G" = derived from gridref , "E" = error cases derived from gridref,

"H" = based on GPS readings (NZGD49), "D" = by definition i.e. grid points.

Ten minute

Station,Date(local),MnDir(degT),MnSpd(mps),StdDir(degT),StdSpd(mps),GstDir(degT),GstSpd(mps),MnTemp(C),MnRH(%),Rain(mm),Pmsl(hPa),RadGlb(MJ),RadDif(MJ),RadDir(MJ)

Baring Head,01/01/2011 00:10,140,7.7,0,0.4,-,-,15.5,83,0.0,1012.3,0.0000,-,-

Baring Head,01/01/2011 00:20,140,7.5,0,0.4,-,-,15.5,83,0.0,1012.3,0.0000,-,-

Baring Head,01/01/2011 00:30,139,6.7,1,0.4,-,-,15.6,82,0.0,1012.4,0.0000,-,-

Baring Head,01/01/2011 00:40,140,5.6,1,0.5,-,-,15.6,82,0.0,1012.6,0.0000,-,-
The header’s first line is recognised via the text “Station information:” and subroutine CliFlo parses the heading to extract many details. This columnwise data format could be read by pmuD, as advised by header records suitable for it, but these data are at ten minute intervals not thirty, and the original specification for Gnash was for half-hourly data only. Until Gnash’s internals are extended to escape this constraint, the interim procedure is that subroutine CliFlo will convert the ten minute data into half-hourly for storage in Gnash’s work file. The CliFlo system can also present data in different time intervals, such as hourly or monthly averages, etc. but it does so in entirely different formats. The current scheme is for ten-minute data (itself produced from observations at three second intervals) only, which are available only for more recent observation sites, since the introduction of electronic data recording.

The ten-minute data can be produced by CliFlo in a variety of formats, but only certain arrangements are acceptable to Gnash’s subroutine CliFlo. They are selected by various choices scattered about in the form used to prepare a request to the CliFlo system, and suitable choices are:
a) Comma delimited text output, or tab-delimited (some station names contain commas!)

b) Dates in the form dd/mm/yyyy and times as hh:mm. Though variations on this are acceptable, four-digit years should be selected by anyone who recalls the “y2k” problem and the order must be day/month/year. The date and time may appear in one combined field or two separate fields, and the clock style can be any of NZST, UTC (or GMT) or “local” - these will be realigned to correspond to the civil clock (or “local”) style used by Gnash. But there will be annoyances for the start of the first day and end of the last day if you select NZST and they fall during the NZDT time, so “local” might be best (electricity consumption is strongly linked to the civil clock) – but CliFlo imposes its own oddities as to day boundaries when requesting data – as does Gnash, it uses ending times (a standard in meteorology) but CliFlo can’t mention midnight except as time zero of the next day, so some messing about editing data files may result.

c) The station identifier is to be the Station Name, and must be present even if you only dump data for one station so that every record names the same name. If you dump data for more than one station at a time into a file, there is a slight advantage to using the order by station name.
Note that this is another example of the usual loose talk about time: using NZST does not mean using time according to the New Zealand Standard Time specification, here it means using NZST all year around. It is the choice of “local” that is in accordance with New Zealand Standard Time.

When presented by a suitable data file as produced by the CliFlo system with those options, Gnash will identify the various data series associated with each station name. There are thirteen, but a given station need not supply some, and CliFlo can be directed to omit series when producing output. There will still be entries in the data file fields, but they will be null or signify “no data”; Gnash will save only data series with valid values, with names according to the following schedule:
CliFlo
Prefix
Suffix

Gnash Title

MNSPD
WIND.~
Speed.Mean

Mean Speed, metres/sec.

MNDIR
WIND.~
Bearing.Mean
Mean Bearing, degrees.

STDSPD
WIND.~
Speed.SD

Speed standard deviation.

STDDIR
WIND.~
Bearing.SD

Bearing standard deviation.

GSTSPD
WIND.~
Speed.Gust

Max. Speed, metres/sec.

GSTDIR
WIND.~
Bearing.Gust

At max. speed, degrees.

MNTEMP
AIR.~
Temp

Mean temperature, °C.

MNRH
AIR.~
RH

Relative humidity, %.

PMSL
AIR.~
BP

Pressure at sea level, HPascal.

RAIN
RAIN.~

Rainfall, millimetres.

RADDIF
SOLAR.~
R.Diffuse

Diffuse irradiation, KW/m² Horizontal.

RADDIR
SOLAR.~
R.Direct

Direct irradiation, KW/m² Perpendicular.

RADGLB
SOLAR.~
R.Total

Total irradiation, KW/m² Horizontal.
The column headings supplied by CliFloare actually more complex as they give the units of measurement in parentheses, but the above shows the texts that Gnash recognises. Each recognised data series will have a run name formed by a prefix and suffix around the station name, except for “Rain” to avoid redundancy. Some station names are given with a suffix “ Ews” that so far does not seem to distinguish its data from the same place name used for other ten-minute data, so it is snipped off the name, though retained in the title.

The irradiation data require careful attention: the total is not the sum of the direct and diffuse irradiation. All three are measured sepatrately. The total (or “global”) irradiation is the radiation incident on a horizontal plane while the diffuse irradiation is the same but with the sun’s disc blocked out to exclude direct irradiation: thus it is from all the rest of the sky. The direct irradiation is for a surface oriented perpendicular to the sun as it moves across the sky.

The ten minute data are averaged, totalled, or recalculated as seems appropriate to give half-hourly values. The irradiation data are converted from megajoules in a half hour to kilowatts over a half hour to correspond with the usage for electrical data series. The standard deviations are difficult. The usual approach for an addition is to add the variances of the components, but the combination of ten-minute values into a half-hour value is not a matter of addition but of set union. Each of the three ten-minute variances is the separate variance about each ten-minute group average (of observations taken every three seconds in the ten minutes) and these averages can differ. What is wanted is that variance that would have been computed from the whole half hour’s observations. A variance can be computed from the sum and sum of the squares of the component values, and these sums can be reconstituted: suppose ai and vi represent the supplied ten-minute averages and variances, and there are N values for each.

Calculate
[image: image1.emf]A=

∑

a

i

and
[image: image2.emf]S =

∑

a

i

2

+v

i

 Then the variance of the whole is
[image: image3.emf]S

N

− (

A

N

)

2

However I’m not at all clear on how a standard deviation can properly be calculated for a bearing, as bearings are averaged via a vector sum, problematical when considering
[image: image4.emf]∑

(x

i

−

̄

x)

2

In computing a standard deviation figure for the wind direction over ten minutes from measurements taken every three seconds, the data loggers have been set to use the algorithm due to R.J. Yamartino that decides on a particular interpretation. It employs an approximation that is said to give in a single pass results close to what might be produced via a two-pass calculation over the constituent values, thus not straining the storage capacity of the data logger. However, the calculation needs the individual measurements which are unavailable and the necessary factors can’t be reconstituted as above for the wind speed.

The method takes a collection of angles (in the mathematical style, converted from bearings) and prepares unit vectors in that direction, represented as complex numbers for convenience:
[image: image5.emf]z

i

= (cos (a

i

) , sin (a

i

))

whose summation gives the average position
[image: image6.emf]Z =

1

N

∑

z

i

 from which arctan(Z) gives the average angle, which can be converted back to a bearing. An obvious variation is to compute an average bearing using not unit vectors but vectors proportional to the wind speed, as Gnash does for calculating its half-hourly average bearing even though the data logger is set to use unit vectors.

The RJ. Yamartino’s estimate for the standard deviation of the values of the bearing was chosen from many different candidates to be

[image: image7.emf]arcsin (e) (1+(

2

√

3

−1) e

3

)

 where
[image: image8.emf]e =

√

1−(Z

x

2

+ Z

y

2

)

The key to this is remembering that sin2θ + cos2θ = 1, so that if the wind direction is steady the value of e will be zero, and thus zero will be the estimate of the standard deviation of the wind direction.

Using the method on the three ten-minute values of the bearing in a half hour to generate a standard deviation for the half hour would ignore the supplied values of the ten-minute standard deviations. Thus, suppose there was wide variation about each of three directions, themselves nearly equal: the standard deviation formed from those three similar directions would be small, not wide.

For the moment, I have treated the standard deviation of the bearing in the same way as the standard deviation in the wind speed. This will behave badly if the component average bearings straddle the 0°/360° split. If this proves troublesome, a simple average might be better. But, it is not suitable. Suppose the three ten-minute data offer a wobble of 1° around bearings of 20°, 25°, and 30° (the wind direction is steadily changing) – it is surely not correct to say that over the half hour the wobble was 1°, the average, because over a half hour the spread of bearings was much greater than within the ten-minute subsections.

Once within Gnash’s scheme, these data series can be subjected to the same calculations as any other data series. In particular, the STATS command can produce daily or weekly or monthly or quarterly or annual averages, etc. and the AFFINITY command can correlate one series with another. However there will be no special treatment therein of bearings and the like, so you should pay attention to what you are doing and avoid nonsensical calculations.
Cannibal
Suppose you have one Gnash work file, say ThisBag.Gnash containing data series A, B, C, and a second work file ThatBag.Gnash containing series X, Y, Z, and you would like to mess about with them together. You could start with one work file and EAT the source data files of the other, or start with an empty work file and eat the source files of both, but this may be tedious if there are many source files and a lot of messing about went into their collation.

Instead, you could start with one, say ThisBag.Gnash and enter the command
EAT ThatBag.Gnash
Subroutine Gourmand will recognise the file as being a Gnash workfile (presuming that it is!) and activate subroutine Cannibal, which will merge the file’s data series with those in the existing work file just as if any other data file were being read. Work file ThisBag.Gnash will be changed thereby, and henceforth, any use of it will find that it contains the union of the data from the two work files.

If instead you wish to retain the two work files as containing only their separate collections, then you would start with an empty work file and issue two EAT commands, ending up with three work files.

Some slight organisation will help. When Gnash is started (see the file ReadMe.odt), if it is not told the name of the work file to use, it will attempt to use a file called BigBag.Gnash, and if there is no file of that name, it will create one, an empty work file, which is to be filled by suitable EAT commands. If you start off in some file directory (or “folder”) in which there is a file BigBag.Gnash, and it contains data series A, B, C, while in another directory there is another work file, also called BigBag.Gnash but containing data series X,Y,Z, then in the current directory, you would rename BigBag.Gnash to ... oooh ThisBag.Gnash (or fred), then, when Gnash is activated in that directory, it will not find a file BigBag.Gnash and so create an empty work file of that name. Next you would enter two EAT commands, one to eat ThisBag.Gnash (or fred) and the other to eat the BigBag.Gnash work file in the other directory. Perhaps you might then rename BigBag.Gnash to be BiggerBag.Gnash, or other act of organisation.

Happy eating!
_157940900.unknown

_158415276.unknown

_158415660.unknown

_158416044.unknown

_158445744.unknown

_158446128.unknown

_158446512.unknown

_158446896.unknown

